ESTIMATION OF TOTAL PHENOLIC, FLAVONOIDAL CONTENTS, ANTIOXIDANT ACTIVITY AND GC-MS OF RAW AND STABILIZED DEFATTED RICE BRAN

Aliaa M. Abd El-khaled¹; Hani M.A. Mohamed¹; El-Soukkary, F.A.H¹ and Hanaa M. Hassan²*

¹Food Science Department, Faculty of Agriculture, Minia University, Minia 61519, Egypt.
²Agricultural Chemistry Department, Faculty of Agriculture, Minia University, Minia 61519, Egypt.
*Corresponding author: Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt. Tel: 00201146574158.
E-mail: hanaa_hassan@mu.edu.eg; hanaa.ammar29@yahoo.com

Received: 15 August 2023 Accepted: 2 Oct. 2023

ABSTRACT

The by-product of the rice milling procedure, which entails turning brown rice into polished rice, is rice bran. It has a sizable number of useful bioactive substances. The present study to investigate the rice bran ethanolic extract for Antioxidant assay and GC-MS analysis of three treatments: Defatted Un-treated rice bran, Defatted dry-heating rice bran, and Defatted autoclaving rice bran. In vitro, three different antioxidant techniques (DPPH, FRAP and ABTS) were estimated, Our result revealed that the Defatted Dry-heating Rice bran sample extract exhibited maximum inhibition, followed by the Defatted Autoclaving Rice Bran extract. The lowest level showed in Defatted Un-Treated Rice Bran extract. The more efficient treatment of rice bran extract is Defatted Dry-heating Rice bran in the total phenolic, total flavonoid compounds, and antioxidant assay compared to the other treatments for the study. The presence of seven different phytochemical components of dry heating Rice bran extract, each of which has an additional biological action, was detected by GC-MS, including the, Lanosta-8, 24-dien-3-ol, (3α), Isochiapin B, α-Sitosterol and Ethyl iso-allocholate.

Keywords: Defatted Un-Treated Rice Bran, Defatted Dry-heating Rice bran, and Defatted Autoclaving Rice Bran, GC-MS analysis, IC₅₀.
INTRODUCTION

The Gramineae family includes the plant known as rice, *Oryza sativa* (Anwar et al., 2005). In the vast majority of emerging nations, it serves as the primary cereal food crop. Over 50% of the world’s population consumes rice as their main source of carbs, while Asian countries produce 95% of the world’s rice (Muthayya et al., 2014). The majority of the rice bran produced by the rice polishing sector is used as animal feed (Anwar et al., 2005). The amount of anthocyanin that is deposited influences the colour of the rice coat, and rice bran makes up around 60% of the total nutrients and 8% of the grain’s weight. (Chaudhary, 2003). The majority of it is made up of the pericarp, aleurone, sub-aleurone, and germ layers (Sharif et al., 2014).

Rice bran is a naturally occurring source of vitamins, minerals, protein, fat, fibre, and vital unsaturated fatty acids. It also contains antioxidants such phenolics, tocopherols, tocotrienols, and oryzanol (Sohail et al., 2017). Oryzanol is the primary bioactive substance in rice bran. Owing to its benefits against inflammation (Debnath et al., 2013), cancer (Yasukawa et al., 1998), hypocholesterolemia (Revilla et al., 2009), anti-oxidants (Xu et al., 2001), inflammation (Jariwalla, 2001), and diabetes (Jariwalla, 2001, Ghatak et al., 2012). Rice bran is also attracting a lot of interest from the food, nutraceutical, and pharmaceutical industries because of its high nutritional content, low cost, easy availability, high bioactivity potential, and related health advantages (Sohail et al., 2017).

In order to minimize ant nutrients and block lipase, which hydrolyzes triglycerides into glycerol and free fatty acids once the rice grains are milled, it is unfit for human food and needs to be stabilized quickly (Saunders et al., 1985). Yet, to a lesser extent, peroxidase and lipoxygenase are also responsible for the rancidity of rice bran (Orthoefer et al., 1996). The aim of the study is to know the effect of some thermal treatments such as drying, autoclaving on phenolic and flavonoids content and antioxidant activity of rice bran.

MATERIALS AND METHODS

Fresh rice bran powder was obtained from a local rice mill in Mansoura to stop the generation of fatty acids made without rice bran from rising which collected in December 2022.

Stabilization of Rice Bran: Untreated Rice Bran (Un-RB): 0.5 kg Untreated Rice Bran served as the control (Zaghlol et al., 2018).

- 0.5 kg Rice Bran was prepared for dry-heating (DH-RB) by spreading it in thin layers onto open pans and baking them for 40 min at 15 °C (Irakli et al., 2020).

- For autoclaving, fresh rice bran (0.5 kg) was added to a 2,000 ml beaker and covered with two layers of gauze. It was then sterilised using an autoclave and a vertical steam steriliser (DGL-75B, country) at 121°C for 20 min (Yu et al., 2020).

Proximate Analysis

Utilizing accepted techniques, the amounts of moisture, protein, ash, and
fat were measured. For example, the total carbohydrates were calculated by difference, the amounts of protein were calculated using the Kjeldahl method, the amounts of ash were measured using the dry ashing method, and the amounts of fat were measured using a Soxhlet device (AOAC, 2016). Rice bran that has been fully fatted was soaked in hexane for the duration of a single night at room temperature. After three days of switching the solvent, the resulting solution was filtered, and the solvent was extracted using a rotary evaporator (Kahlon et al., 1992). After soaking in hexane for the full night at room temperature, rice bran was defatted. After three days of switching the solvent, the resulting solution was filtered, and the solvent was extracted using a rotary evaporator (Kahlon et al., 1992).

Free fatty acids (FFAs): Using a common titration technique, the free fatty acid (FFA) concentration of rice bran samples was ascertained (AOCS, 1989).

Obtaining Samples:

Each 5 g of the sample was extracted for 3 h at room temperature using a magnetic stirrer and 50 mL of 70% ethanol. An additional three h were spent extracting the residue, twice passing it through Whatman No. 1 filter paper before pouring it into petri dishes. The extracts were left in the open until the solvent volatilized with a few minor changes (Arab et al., 2011).

Analysis of phytochemicals quantitatively

Determine the total phenolic and flavonoid contents via colorimetry analysis:

Using the Folin-Ciocalteu colorimetric method, the total phenolic content was determined and represented as gallic acid equivalents (mg Gallic acid/g of extract) (Haq et al., 2012). Using aluminium chloride colorimetry, the total flavonoids concentration was determined and expressed as quercetin equivalents (mg of quercetin/g of extract) (Chang et al., 2002; Mahrous et al., 2023)

DPPH-based measurement of antioxidant capacity

Using GraphPad Prism 5, the concentrations were converted to their logarithmic values, and the nonlinear inhibitor regression equation (log (inhibitor) normalised response - variable slope equation) was selected in order to get the IC$_{50}$ value (Boly et al., 2016). The ability of rice bran extract to neutralise the stable free radical 2, 2-diphenyl-1-picryl-hydrazyl-hydrate was evaluated using the procedure described by (Zhang et al., 2013; Mahrous et al., 2023)

Measurement of antioxidant capacity using ferric reducing antioxidant power (FRAP)

Benzi et al. (1996). employed the FRAP experiment to determine the reduction power of rice bran extract with a few modest modifications
Using the ABTS method to evaluate antioxidant capacity

The free radical ABTS (2, 2-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid) was tested to see if rice bran extracts could neutralise it. Rice bran ethanol extract can be distinguished using gas from defatted dry heating rice bran (Arnao et al., 2001).

Chromatography-mass spectrometry (GC-MS).

The GC-MS analysis was carried out by the National Research Center (NRC), Dokki, Giza, using a thermal Scientific, trace GC Ultra / ISQ Single Quadruple MS, and TG-5MS fused silica capillary column (30 m, 0.25 mm, 0.1 mm film thickness). Using an electron ionisation system with ionisation energy of 70 eV and a constant flow rate of 1 ml / min, helium was employed as the carrier gas for GC-MS detection. The MS transfers line and injector had a set 280°C temperature. The quantification of all the identified components was evaluated using % relative-peak area. Based on a comparison of the respective retention times of the compounds, the mass spectra and data from the WILLY and NIST libraries of the GC-MS system were used to make a preliminary identification of the compounds.

Statistical evaluation

The averages and standard deviations of three parallel measurements made up the experimental data. The analysis of variance was carried out using ANOVA methods, GraphPad Software, San Diego, California, USA, developed GraphPad Prism to calculate statistics at P< 0.05 (Motulsky, 1999).

RESULTS AND DISCUSSION:

Chemical composition of raw-defatted and stabilized rice bran:

The moisture content of the samples ranged from 2.53% to 11.38%, with dry heating producing the lowest moisture content and defatted autoclaving rice bran (De -A -RB) having the highest. Table 1 lists the average values for the chemical composition of rice bran. According to Thanonkaew et al. (2012), moisture content varies with processing, temperature, and time.

Protein content of all samples is (10.64: 17.32 %) the highest value was (De –A –RB) , the lowest value 10.64% was for Untreated rice bran (Un-RB). This result in the same line with (Zaghlol et al., 2018 ; El-Gammal et al., 2017). Fat percentage from (23.61 % for Autoclaving rice bran (A-RB) to .09 % for Defatted Un Treated rice bran (De-Un-RB). The ash content was high in dry heating rice bran before and after defatting (8.82 – 9.94 %) respectively .agree with (El-Gammal et al., 2017). With regard to fibers the defatted dry heating rice bran (De-DH-RB) was the top content of fibers, while the (Un-RB) was the least. (Zaghlol et al., 2018).

Rice bran samples' carbohydrate content ranged from (37.05 to 56.13 %) (De-Un-RB) having the highest carbohydrate level (56.13%) according to (Abd El Salam, 2017), and low value was in (A-RB) 37.05%. As previously
reported by other scientists (Lakkakula et al., 2004), different stabilising techniques may limit enzymatic activity to a greater or lesser amount, leading to enhanced or decreased oil extraction.

Quantitative Analysis of Phytochemicals:

- Phenolic and flavonoid content overall:

 Because they can create stable radical intermediates and transfer electrons or hydrogen, phenolic acids have a reputation for serving as antioxidants that prevent the oxidation of a variety of foods, including fatty acids and oils (Cuvelier et al., 1992). According to this investigation, the total phenolic content of the defatted rice bran extract ranged from 38.8 to 40.5 mg/g as gallic acid equivalents (GAE). The defatted dry heating rice bran extract (40.5 mg/g) contained the highest concentration of total phenolic acids. The results are in agreement with those published by (Zaghlol et al., 2018; Pokkanta et al., 2022), and (Anandito et al., 2019), but not in agreement with those published by (Irakli et al., 2020). The lowest value was found in the defatted, untreated rice bran extract (38.8 mg/g). The range of total flavonoids was 4.96 to 9.93 mg/g. According to Pokkanta et al. (2022), the defatted dry heating rice bran extract had the greatest total flavonoids (9.93 mg/g), whereas the defatted autoclaving rice bran extract had the least value.

- Activity of Antioxidants:

 Using free radical estimation, the antioxidant (scavenging) activity of several extracts was measured (DPPH). When DPPH is exposed to an electron or a hydrogen radical, it changes from a stable free radical to a stable diamagnetic molecule (David et al., 2004). Antioxidants’ effect on the DPPH radical’s ability to be reduced is measured by the decrease in its absorbance at 517 nm. Since radicals are scavenged by hydrogen donation when an association between antioxidant molecules and radicals forms, antioxidants are to blame for the drop in DPPH radical absorption. It can be visualised as a change from purple to yellow in colour. Hence, DPPH is frequently used as a substrate to assess the effectiveness of antioxidants (Edamatsu et al., 1989). The investigated rice bran extracts all shown free radical scavenging activity in the current data (Table 3). (De-DH-RB) extract exhibits the strongest DPPH scavenging capabilities along with (Anandito et al., 2019). Defatted Un Treated Rice Bran, Defatted dry- heating rice bran, and Defatted Autoclaving Rice Bran all had mean IC\textsubscript{50} values of ethanolic extract of 37.16, 36.78, and 36.79, respectively. On the other hand, the ABTS radical scavenging activity of Defatted Un - Treated Rice Bran, Defatted Dry- heating Rice Bran, and Defatted Autoclaving Rice Bran was 189.85, 284.46, and 210.

Awika et al. (2003) asserted that the ABTS assay is superior to the DPPH assay because it is quicker, less expensive, and operational over a larger pH range. Both of these radicals are routinely used to assess antioxidant efficacy in vitro despite not being present in biological systems. The FRAP radical scavenging activities of (De-Un-RB), (De-DH-RB), and (De-A-RB) were 135.07, 195.07, and 124.89 μM TE/mg sample, respectively. The ability of the
free and bound phenolic compounds in rice bran to convert iron (III) to iron (II) was evaluated using FRAP analysis. The free phenolic FRAP antioxidant ability was enhanced by the stabilisation treatment, according to Ti et al. (2014) and Wanyo et al. (2014). Moreover, bound phenolics demonstrate a clear correlation between ferrous reducing activity and total phenolic compound.

Free fatty acids (FFA):

Unstabilized rice bran oil had 3.96% more free fatty acids (FFA) than stabilised rice bran. When heated by dry heating (2.8%) and autoclaving (3.35%), stabilised rice bran produces oil of greater quality than unstabilized rice bran (Hussain et al., 2021). It was assumed that the FFA concentration had increased due to the rice bran's enzymatic lipase activity. Stabilization is required before extraction in order to inhibit lipase enzymes and reduce the amount of FFA in the produced oil (Amarasinghe et al., 2009).

Identification of defatted dry heating Rice bran extracts using gas chromatography-mass spectrometry (GC-MS):

According to the findings in Table 4 and Fig. 1, Defatted dry- heating rice bran rice bran ethanol extract contained seven different compounds that were identified using gas chromatography-mass spectrometry (GC-MS). The main substances present in the defatted dry heated rice bran ethanol extract included Lanosta-8, 24-dien-3-ol, (3á), Isochiapin B, Ó-Sitosterol , Ethyl iso-allocholate , 1-Heptatriacotanol, 4H-1-benzopyran-4-

one 2-(3,4 Di methoxy phenyl)-3,5- Di hydroxyl -7-methoxy and, Flavon 4’-OH,5-OH,7-Di-O-Glucoside. The biological effects of these substances are also varied.

CONCLUSION:

Rice bran is an excellent source of nutrients and health benefits. So, it's necessary to carried out one of the stabilizing treatments to inhibit the lipase activity which cause a rancid flavour and it is not appropriate for human use. Also, it could be concluded from this study that the dry heating was the best treatment because of increasing the antioxidant activity, the phenol and flavonoids contents. Besides lowering the free fatty acids in the extracted oil. For that, potentially we can use rice bran extract as a natural preservative safe in the food industry.

Author contribution:

Aliaa M. Abd El-khalek : visualization, software, data curation, and methodology; Hani M. A. Mohamed: Supervisor - writing—original draft preparation and investigation; El- Soukkary, F.A.H.: methodology, software, writing and validation; Hanaa M. Hassan: conceptualization, investigation, methodology, formal analysis, data curation, writing (original draft preparation), writing (review and editing, and visualization).
Table 1. The impact of defatting and stabilisation techniques on the chemical composition of stabilized rice bran

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moisture (%)</th>
<th>Protein (%)</th>
<th>Fat (%)</th>
<th>Ash (%)</th>
<th>Fibers (%)</th>
<th>Carbohydrates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Un-RB)</td>
<td>9.28±0.07</td>
<td>10.64±0.62</td>
<td>23.10±0.35</td>
<td>8.16±0.05</td>
<td>7.50±0.32</td>
<td>41.31±6.3</td>
</tr>
<tr>
<td>(DH-RB)</td>
<td>2.53±0.18</td>
<td>12.81±0.48</td>
<td>22.40±0.04</td>
<td>8.82±0.06</td>
<td>12.67±1.54</td>
<td>40.77±1.9</td>
</tr>
<tr>
<td>(A-RB)</td>
<td>9.96±0.17</td>
<td>12.71±0.43</td>
<td>23.61±0.05</td>
<td>8.08±0.005</td>
<td>8.58±0.20</td>
<td>37.05±5.7</td>
</tr>
<tr>
<td>(De-Un-RB)</td>
<td>9.62±0.18</td>
<td>16.11±8.2</td>
<td>0.09±0.05</td>
<td>9.38±0.17</td>
<td>8.67±0.51</td>
<td>56.13±1.1</td>
</tr>
<tr>
<td>(De-DH-RB)</td>
<td>8.55±0.00</td>
<td>17.00±0.08</td>
<td>1.78±0.16</td>
<td>9.94±0.16</td>
<td>9.50±0.18</td>
<td>53.24±5.2</td>
</tr>
<tr>
<td>(De-A-RB)</td>
<td>11.38±0.02</td>
<td>17.32±0.50</td>
<td>0.29±0.10</td>
<td>9.64±0.04</td>
<td>9.05±0.33</td>
<td>52.33±8.6</td>
</tr>
</tbody>
</table>

Each value is expressed as the mean±SD (n= 3)

Table 2. Total Phenolic Compounds and Total Flavonoids of defatted Rice Bran.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Phenolics (mg GAE/g extract)</th>
<th>Flavonoids (mg QE/g extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(De-Un-RB)</td>
<td>38.83±0.76</td>
<td>8.6±2.42</td>
</tr>
<tr>
<td>(De-DH-RB)</td>
<td>40.50±0.50</td>
<td>9.93±0.11</td>
</tr>
<tr>
<td>(De-A -RB)</td>
<td>39.75±0.25</td>
<td>4.96±0.05</td>
</tr>
</tbody>
</table>

(De-Un-RB): Defatted Un Treated Rice Bran, (De-DH-RB): Defatted Dry- heating Rice bran and (De –A –RB): Defatted Autoclaving Rice Bran.

Aliaa M. Abd El-khalek et. al., 2023
Table 3. Antioxidant Activity of Rice Bran Extracts.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>DPPH % Inhibition</th>
<th>FRAP (μM TE/mg sample)</th>
<th>ABTS (μM TE/mg sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC₅₀ (μg/m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(De-Un-RB)</td>
<td>97.80</td>
<td>37.16</td>
<td>135.07 ± 3.08</td>
</tr>
<tr>
<td>(De-DH-RB)</td>
<td>98.99</td>
<td>36.78</td>
<td>195.07 ± 8.02</td>
</tr>
<tr>
<td>(De-A-RB)</td>
<td>98.40</td>
<td>36.79</td>
<td>124.89 ± 7.41</td>
</tr>
</tbody>
</table>

*The IC₅₀ values represent the amount of extract needed to remove 50% of radicals from the reaction mixture. (De-Un-RB): Defatted Un- Treated rice bran, (De-DH-RB): Defatted dry- heating rice bran and (De-A-RB): Defatted autoclaving rice bran.

Figure 1. GC-MS Chromatogram for Separation of dry heating Rice bran extract.
Table (4). Show the major phytocomponents of defatted dry heating Rice bran extracts using gas chromatography-mass spectrometry (GC-MS)

<table>
<thead>
<tr>
<th>NO</th>
<th>RT</th>
<th>Compound Name</th>
<th>Molecular Formula</th>
<th>Area %</th>
<th>MW</th>
<th>Nature</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-</td>
<td>35.98</td>
<td>δ-Sitosterol</td>
<td>C_{29}H_{50}O_{10}</td>
<td>10.01</td>
<td>414</td>
<td>natural product</td>
<td>δ-Sitosterol is well known for lowering cholesterol, reducing inflammation, and regulating benign prostate enlargement. (Muthiah et al., 2017)</td>
</tr>
<tr>
<td>B-</td>
<td>38.92</td>
<td>Flavon 4’-OH,5-OH,7-Di-O-Glucoside</td>
<td>C_{27}H_{50}O_{13}</td>
<td>1.35</td>
<td>594</td>
<td>Flavonoids</td>
<td>Antioxidant activity (Jitareanu et al., 2013)</td>
</tr>
<tr>
<td>C-</td>
<td>39.93</td>
<td>Ethyl isovalacholate</td>
<td>C_{26}H_{48}O_{5}</td>
<td>5.09</td>
<td>436</td>
<td>steroidal derivative</td>
<td>Lapeol, an antibiotic, has actions that include those against cancer, protozoa, chemoprevention and inflammation, antimalarial, antiviral, antiprotozoal, antitumor and anticancer, enzyme inhibitor, and effects against hypercholesterolemia. (Baskaran and colleagues, 2015).</td>
</tr>
<tr>
<td>D-</td>
<td>40.88</td>
<td>1-Heptatriacontanol</td>
<td>C_{27}H_{50}O_{5}</td>
<td>2.11</td>
<td>536</td>
<td>natural product (Alcohol)</td>
<td>Lapeol, an antibiotic, has actions that include those against cancer, protozoa, chemoprevention and inflammation, antimalarial, antiviral, antiprotozoal, antitumor and anticancer, enzyme inhibitor, and effects against hypercholesterolemia. (Baskaran and colleagues, 2015).</td>
</tr>
<tr>
<td>E-</td>
<td>41.52</td>
<td>Isochiapin B</td>
<td>C_{19}H_{22}O_{6}</td>
<td>9.27</td>
<td>346</td>
<td>sesquiterpene lactone</td>
<td>Anti-insect, antimicrobial, antioxidant, anticancer (Senthilkumar, 2012)</td>
</tr>
<tr>
<td>F-</td>
<td>42.61</td>
<td>Lanosta-8,24-dien-3-ol, (3α)-</td>
<td>C_{30}H_{50}O_{2}</td>
<td>26.54</td>
<td>426</td>
<td>tetracyclic terpenols</td>
<td>Anti-mosquito larvicidal activity, anti-inflammatory, anticancerogenous and analgesic agents (Al-Marzoqi et al., 2016 and Planowski et al., 2008).</td>
</tr>
<tr>
<td>G-</td>
<td>44.32</td>
<td>4H-1-benzopyran-4-one,2(1H)-4Dihydroxy phenyl -3,5-Di hydroxyl -7-methoxy</td>
<td>C_{18}H_{16}O_{7}</td>
<td>4.06</td>
<td>344</td>
<td>natural product</td>
<td>Antioxidant, antimicrobial, cancer enzyme inhibitors in pharmaceutical, cosmetics, and food industries (Huang, D. and Irwin, G., 2006)</td>
</tr>
</tbody>
</table>
A. Structure of α-Sitosterol present in Rice bran with RT= 35.70 using GC-MS analysis.
B. Structure of Ethyl iso-allocholate present in Rice bran with RT= 39.93 using GC-MS analysis.
C. Structure Flavan-4'-OH,5-OH,7,Di-O-Glucoside present in Rice bran with RT= 38.92 using GC-MS analysis.
D. Structure of 1-Heptatriacotanol present in Rice bran with RT= 40.88 using GC-MS analysis.
E. Structure of Isochiapin B present in Rice bran with RT= 41.52 using GC-MS analysis.
F. Structure of Lanosta-8, 24-dien-3-ol, (3b) present in Rice bran with RT= 42.61 using GC-MS analysis.
G. Structure of 4H-1-benzopyran-4-one 2-(3,4 Di methoxy phenyl) -3,5, Di hydroxyl -7-methoxy present in Rice bran with RT= 44.32 using GC-MS analysis.
REFERENCES

AOAC. (20160. International Official Methods of Analysis, 20th ed.; Association of Official Agricultural Chemists: Rockville, MD, USA,

Benzie IFF & Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal.Biochem. 239, 70 ± 76

Chaudhary, R. C. (2003). Specialityrices of the world: Effect of WTO and IPR on its production trend and marketing. Food, Agriculture and Environment, 1(2), 34-41

Huang, D, Boxin, OU, and Prior, RL. (2005). The chemistry behind antioxidant capacity assays. Journal
of Agricultural and Food Chemistry; 53 (6): 1841–1856

Pokkanta, P., Yuenyong, J., Mahatheeranont, S.,

المنشأ العربي

تقدير إجمالي محتويات الفينول، الفلافونويد، النشاطمضاد للأكسدة، وكرومومترافيا الغاز

علياء مرزوق عباد الخالق1, هاني مصطفى علي محمد1, فوزي علي حسن السكري1,
هناء محمد حسن2

1قسم علوم الأغذية، كلية الزراعة – جامعة المنها – اليمن 19516، مصر
2قسم الكيمياء الزراعية – كلية الزراعة – جامعة المنها – اليمن 19516، مصر

وتحتوي على عدد كبير من المواد النشطة بيولوجيًا المفيدة. هدف الدراسة الحالي إلى تدريب النشاط المضار للأكسدة والتحول الكرومومترافي الغازي لثلاثة معايير لمستخلص الإيثانولنقالاة الأرز، ونظام النشاط مزروع الدهن الغير معاملة، نشاطة الأرز مزروع الدهن والمعاملة بالتسخين الجاف، ونظام الأرز مزروع الدهن والمعاملة بالإنوكلياف، وكشف FRAP، DPPH، ABTS، وكشف

نتائجنا أن مستخلص عينة نشاطة الأرز مزروع الدهن والمعاملة بالتسخين الجاف أظهر أقصى قدر من التأثير، يليه مستخلص ونظام الأرز مزروع الدهن والمعاملة بالإنوكلياف. وأنه مستوي ظهر في مستخلص نشاطة الأرز مزروع الدهن الغير المعاملة. المعاملة الأكثر فاعليًا لمستخلص نشاطة الأرز هي نشاطة الأرز مزروع الدهن والمعاملة بالتسخين الجاف في إجمالى المركبات الفينولية، الفلافونويدات والنشاط مضاد للأكسدة مقارنة بالمعاملات الأخرى للدراسة، وتم اكتشاف وجود سبعة مكونات كيميائية نباتية مختلفة، لكل منها تأثير بيولوجي إضافي تم تدربها بواسطة التحليل الكرومومترافي الغازي ومنهم

Lanosta-8, 24-dien-3-ol, (3α).Ethyl iso-allocholate و 6-Sitosterol, Isochiapin B